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Abstract
This paper addresses the challenge of train-
ing high-quality generative adversarial networks
(GANs) with limited data. I first review three
relevant papers that propose novel techniques to
improve GAN training and image generation us-
ing limited datasets. Building upon the insights
gained from these papers, I propose a new ap-
proach called temporal augmentation, which en-
hances the performance of GAN models by in-
corporating temporal dynamics into the training
process. I conduct a series of experiments us-
ing a modified StyleGAN2 ADA framework and
a dataset of GIFs featuring human faces. The
results demonstrate that temporal augmentation
leads to marginally improved model performance,
highlighting the potential of this technique to en-
hance the training of GANs on limited datasets
that already have a temporal component.

1. Introduction
Generative adversarial networks (GANs) have shown great
promise in generating realistic images [1]. However, train-
ing GANs with limited data remains a challenge. Acquiring
large and diverse datasets for training can be costly and
impractical, limiting the applicability of GANs in various
domains. To address this problem, I explore three papers
that propose innovative approaches to improve GAN train-
ing and image generation using limited data.

The first paper focuses on training GANs with limited data
by leveraging transfer learning and data augmentation tech-
niques [1]. The second paper introduces a novel framework
that reparameterizes the latent generative space as a mixture
model to capture image modality diversity [2]. The third
paper presents a method for text-driven image manipulation
using StyleGAN and CLIP [3].

In my extended work, I aim to introduce a novel augmen-
tation approach: temporal augmentation. By incorporating
temporal dynamics into the augmentation process, the GAN
model can hopefully become more resilient on datasets con-
taining temporal information than with other augmentation

strategies alone. This not only aligns with the objective of
the original paper in enabling GANs to perform well with
limited datasets, but also extends the benefits to harness
the inherent structure present in temporal data. This new
augmentation technique seeks to move beyond the agnostic
replication of identical training material, and instead facil-
itates the creation of a more diverse and robust data-feed,
contributing to the advancement of machine learning models
in scenarios involving temporal data.

If the implementation proves successful, it would suggest
that the temporal character of specific datasets could be
leveraged to potentially create more robust AI models, and
that incorporating temporal augmentations within the ADA
framework could further enhance the utilization of limited
datasets by GANs.

2. Review of Paper to Implement (Paper 1)
2.1. Storyline

Introduction The paper ”Training Generative Adversarial
Networks with Limited Data” proposes an adaptive discrim-
inator augmentation mechanism to improve the training
process and achieve better results when training GANs with
limited data.

High-Level Motivation/Problem The paper addresses
the need to train high-quality generative models with limited
data. GANs have shown promise in generating realistic data,
but their performance is often hindered by the lack of large
and diverse training datasets. Acquiring such datasets can be
costly and impractical, limiting the application of GANs in
various fields. The paper aims to make training high-quality
generative models with small custom datasets more feasible,
thereby expanding the use of GANs in different research
fields.

Prior Work on the Problem Prior research has explored
transfer learning and data augmentation techniques to ad-
dress the challenge of training GANs with limited data.
The paper ”TransferGAN: A Generative Model for Small
Data Transfer Learning” introduces TransferGAN, which
leverages transfer learning to improve GAN performance
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with limited data. The paper ”Data Augmentation Gener-
ative Adversarial Networks” introduces DAGANs, which
use data augmentation strategies to enhance GAN training
with limited data.

Research Gap Despite previous efforts, there is still a
research gap in stabilizing GAN training and achieving
improved results with limited data. Existing methods often
struggle with overfitting, where the discriminator becomes
too good at distinguishing between real and generated data.
This leads to training divergence and poor performance of
the generator. Addressing this overfitting issue and finding
effective ways to stabilize training with limited data is the
key research gap that this paper aims to fill.

Contributions The main contributions of the paper are:

1. An adaptive discriminator augmentation mechanism to
prevent overfitting in GANs trained with limited data.

2. A diverse set of augmentations that do not affect the
generated data.

3. Demonstration of the method’s effectiveness on differ-
ent datasets, achieving comparable results to existing
methods with significantly fewer training images.

4. Improved performance on the widely used CIFAR-10
dataset.

2.2. Proposed Solution: Adaptive Discriminator
Augmentation Mechanism

The proposed solution is an adaptive discriminator augmen-
tation mechanism that applies a diverse set of augmentations
to the training data seen by the discriminator. This mecha-
nism prevents overfitting and improves the stability of GAN
training with limited data. The augmentations are carefully
designed to not affect the generated samples.

Mathematically, the adaptive discriminator augmentation
mechanism can be represented as follows: The discriminator
input is denoted by xtrain, representing the training data with
augmentations.

Augmentations are defined as A = {a1, a2, . . . , an}, which
is the set of augmentations applied.

The probability of applying an augmentation is denoted by
p, and it is controlled by hyperparameter tuning.

During training, the discriminator receives augmented train-
ing data xtrain, where each sample undergoes a sequence
of augmentations chosen from the set A based on the hy-
perparameter p. This ensures that the discriminator sees a
diverse range of augmented training examples, preventing
overfitting to specific augmentation patterns. This process

essentially functions as the discriminator’s ”goggles”, en-
abling it to see a diverse range of strategically augmented
training examples. It is this diversity, created by the adap-
tive application of augmentation patterns, that prevents the
discriminator from overfitting to any specific pattern.

Experimental Results Extensive experiments were con-
ducted on various datasets, such as FFHQ and LSUN CAT,
to evaluate the effectiveness of the proposed mechanism.
The results showed significant improvements in the quality
and diversity of generated samples compared to baselines
and other methods.

2.3. Claims and Evidence

Claim 1: Improved Stability of GAN Training The
proposed mechanism improves the stability of GAN training
compared to previous methods.

Evidence 1: Experimental results on the FFHQ dataset
showed smoother and faster convergence compared to base-
lines and alternative methods (see Figure 1 of the paper)
[1].

Claim 2: Robustness to Hyperparameters The pro-
posed method is robust to the choice of hyperparameters.

Evidence 2: The augmentation probability remained stable
and adjusted effectively during training, demonstrating the
method’s robustness to hyperparameter choice (see Figure
5c of the paper) [1].

Claim 3: Superior Results with Limited Data The pro-
posed method achieves superior results with limited data
compared to baseline methods.

Evidence 3: The Fréchet inception distance (FID) scores
consistently showed the superiority of the proposed method
compared to baselines and balanced consistency regulariza-
tion (bCR) methods (see Figure 7 of the paper) [1].

2.4. Critique and Discussion

The paper provides a thorough study of augmentations and
their potential leakage, and the experimental results demon-
strate how the adaptive nature of the augmentation strength
improves model performance. The experimental results pro-
vide strong support for the effectiveness of the proposed
method, outperforming alternatives, even with a limited
number of training images. It is particularly noteworthy that
this includes the CIFAR-10 benchmark.

However, a more detailed comparison with similar aug-
mentation mechanisms discovered by other research groups
would have strengthened the evaluation. Clarifying similari-
ties and differences with these approaches would enhance
understanding of the state-of-the-art in training GANs with
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limited data. The clear description of methodology, ex-
perimental configurations, and impact of hyperparameters
indicate a robust approach, but future work could delve
deeper into these aspects.

3. Review of Paper 2 (DeLiGAN)
3.1. Storyline

Introduction The paper ”DeLiGAN: Generative Adver-
sarial Networks for Diverse and Limited Data” proposes
the DeLiGAN framework, which reparameterizes the latent
generative space as a mixture model. This modification
enables the generation of diverse and realistic images using
limited amounts of training data.

High-Level Motivation/Problem The motivation is to
generate diverse images with limited training data, which
is often challenging in real-world applications. Existing
GAN-based approaches require large datasets to capture
image modality diversity. The authors aim to address this
limitation and enable the generation of diverse images with
limited data, benefiting domains like object recognition,
image synthesis, and remote sensing.

Prior Work on the Problem Previous research has fo-
cused on improving GAN performance using transfer learn-
ing, data augmentation, and regularization techniques. How-
ever, these approaches struggle with limited data and fail to
capture image modality diversity effectively.

Research Gap The research gap lies in generating diverse
images with limited data. Existing approaches either lack di-
versity or require impractical amounts of training data. This
paper aims to fill this gap by proposing a novel framework.

Contributions The main contributions of the paper are:

1. The DeLiGAN framework, which reparameterizes the
latent generative space as a mixture model to capture
image modality diversity.

2. Demonstration of DeLiGAN’s effectiveness in gener-
ating diverse images across different modalities.

3. Introduction of a modified ”inception-score” to quan-
titatively measure intra-class diversity of generated
samples.

3.2. Proposed Solution: DeLiGAN Framework

The proposed DeLiGAN framework reparameterizes the
latent generative space as a mixture model to capture image
modality diversity, even with limited training data.

Mathematically, the DeLiGAN framework can be repre-
sented as follows:

1. Latent Space Reparameterization: The latent space is
represented as a mixture of Gaussians model:

p(z) =

N∑
i=1

ϕig(z|µi,Σi)

where N is the number of Gaussian components, ϕi

are the mixture weights, and g(z|µi,Σi) represents
the probability of the sample z in the i-th Gaussian
distribution with mean µi and covariance matrix Σi.

2. Training Procedure: The generator and discriminator
networks are trained adversarially in the standard GAN
framework. The generator learns to generate realistic
samples from a random input vector z sampled from
the latent space, while the discriminator aims to distin-
guish between real and generated samples, providing
feedback to the generator for improvement.

3. Diversity Enhancement: The reparameterization of the
latent space as a mixture model allows the generator
to capture the diverse modes of the image distribution.
By incorporating multiple Gaussian components, the
model can generate diverse and realistic images even
with limited training data.

The DeLiGAN framework offers a flexible and effective
approach to handle limited data scenarios while maintaining
diversity in the generated samples.

3.3. Claims and Evidence

Claim 1: Improved Diversity in Generated Samples
The DeLiGAN framework enables the generation of diverse
samples even with limited training data.

Evidence 1: Experiments on different image modalities,
including handwritten digits, photo objects, and hand-drawn
sketches, demonstrated that DeLiGAN generates samples
with higher diversity compared to baseline GAN models.
Visual comparisons in Figure 5 of the paper support this
claim [2].

Claim 2: Effective Generation with Limited Data DeLi-
GAN achieves effective generation of diverse samples even
with limited training data.

Evidence 2: Experiments on the CIFAR-10 dataset, with
limited data, showed that DeLiGAN achieved higher mod-
ified ”inception-score” values compared to baseline GAN
models, indicating effective generation of diverse samples
(see Table 1 of the paper) [2].

Claim 3: Stable Training Process The DeLiGAN frame-
work stabilizes the training process compared to baseline
GAN models.
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Evidence 3: Visual comparisons in Figure 6 of the paper [2]
demonstrate that DeLiGAN’s training process is more stable
and leads to improved convergence compared to baseline
GAN models.

3.4. Critique and Discussion

The DeLiGAN framework addresses the challenge of gen-
erating diverse images with limited data and demonstrates
promising results. The paper presents a clear narrative,
discussing motivation, prior work, research gap, and contri-
butions.

The evidence provided, including visual comparisons and
modified ”inception-score” values, supports the claims made
by the authors. Experiments on different datasets and lim-
ited data scenarios provide robust empirical evidence for the
effectiveness of the DeLiGAN framework.

However, a more detailed comparison with related augmen-
tation mechanisms from other research papers would have
strengthened the evaluation. Exploring similarities and dif-
ferences with these approaches could enhance understand-
ing of the state-of-the-art in generating diverse images with
limited data.

Overall, the paper presents a well-structured and well-
supported research proposal. The DeLiGAN framework
shows promise in addressing the challenges of generating
diverse images with limited data, and the evidence presented
validates its effectiveness.

4. Review of Paper 3 (StyleCLIP)
4.1. Storyline

Introduction The paper ”StyleCLIP: Text-Driven Manip-
ulation of StyleGAN Imagery” introduces a method for
text-driven image manipulation using StyleGAN and CLIP.
It addresses the challenge of discovering meaningful la-
tent manipulations in StyleGAN by leveraging the joint
language-image representation learned by CLIP. The pro-
posed method allows users to manipulate various visual
attributes of images by providing text prompts.

High-Level Motivation/Problem The motivation is to en-
able intuitive and versatile image manipulation techniques
without manual effort or large annotated datasets. Exist-
ing methods for semantic control discovery often require
manual examination or domain-specific data. The authors
aim to fill this research gap by leveraging the CLIP model’s
ability to understand visual concepts expressed in natural
language, enabling more intuitive and efficient text-driven
image manipulations.

Prior Work on the Problem Previous research has ex-
plored text-guided image generation and manipulation using
conditional GANs, attention mechanisms, and additional
supervision. However, these methods have limitations in
control and training requirements. The proposed StyleCLIP
approach builds upon CLIP’s language-image representa-
tion to provide a more versatile and intuitive text-driven
manipulation method.

Research Gap The research gap lies in combining the
generative power of StyleGAN with the language-image
representations learned by CLIP. Previous methods lack
fine-grained control or require manual effort or annotated
data. The StyleCLIP approach fills this gap by leveraging
the strengths of StyleGAN and CLIP to enable semantic
image manipulations using text prompts.

Contributions The main contributions of the paper are:

1. A text-guided optimization scheme using CLIP to mod-
ify the latent vector of a StyleGAN image, enabling
versatile text-driven image manipulations.

2. A latent mapper that infers a manipulation step in the
latent space of StyleGAN, providing faster and more
stable text-driven image manipulations.

3. A method for mapping text prompts into input-agnostic
directions in StyleGAN’s style space, enabling interac-
tive and fine-grained text-driven image manipulations.

4.2. Proposed Solution: StyleCLIP

The proposed StyleCLIP approach combines StyleGAN and
CLIP for text-driven image manipulations. It offers three
methods: latent optimization, latent mapper, and global
directions.

4.2.1. LATENT OPTIMIZATION

Latent optimization modifies the latent vector of a Style-
GAN image by minimizing a loss function. The loss func-
tion combines CLIP loss, L2 distance in latent space, and
an identity loss. The optimization problem is solved using
gradient descent.

4.2.2. LATENT MAPPER

The latent mapper trains a mapping network to infer a ma-
nipulation step in the latent space of StyleGAN based on a
text prompt. The mapping network consists of three fully-
connected networks, each responsible for a different layer
of StyleGAN.
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4.2.3. GLOBAL DIRECTIONS

Global directions map a text prompt into an input-agnostic
direction in StyleGAN’s style space. This is achieved by
assessing the relevance of each style channel to the target
attribute. The manipulation direction is determined based
on a threshold parameter, allowing fine-grained control over
manipulation strength and disentanglement.

4.3. Claims and Evidence

Claim 1: Versatile Image Manipulation StyleCLIP en-
ables versatile text-driven image manipulations with fine-
grained control over visual attributes.

Evidence 1: Visual examples in Figure 7 of the paper
[3] demonstrate a wide range of semantic manipulations
achieved using latent optimization, latent mapper, and global
directions. These examples showcase the versatility and fine-
grained control of StyleCLIP in responding to text prompts
and producing visually coherent image manipulations.

Claim 2: Faster and More Stable Manipulations The
latent mapper method in StyleCLIP allows for faster and
more stable text-driven image manipulations compared to
latent optimization.

Evidence 2: The similarity of manipulation directions in-
ferred by the latent mapper for different input images demon-
strates stability and consistency across inputs. This ev-
idences the advantage of the latent mapper in providing
faster and more stable image manipulations.

Claim 3: Fine-Grained and Disentangled Manipulations
Global directions in StyleCLIP enable fine-grained and dis-
entangled image manipulations by mapping text prompts
into input-agnostic directions in StyleGAN’s style space.

Evidence 3: Image manipulations along global text-driven
manipulation directions demonstrate fine-grained changes
in visual attributes while preserving other attributes. The
degree of disentanglement is controlled by a threshold pa-
rameter, allowing users to achieve desired levels of manip-
ulation strength and disentanglement (see Figure 6 of the
original paper) [3].

4.4. Critique and Discussion

While addressing the challenge of discovering meaning-
ful latent manipulations without extensive manual effort or
annotated data, one potential limitation is the reliance on
pretrained StyleGAN and CLIP models, which may limit
manipulations to within the domain of the pretrained gen-
erator. Additionally, achieving drastic manipulations in
visually diverse datasets may be challenging. Further com-
parisons with similar augmentation mechanisms proposed
by other research groups could enhance the evaluation and

understanding of the state-of-the-art in text-driven image
manipulation.

5. Implementation

a) Implementation Motivation
While the current data augmentation techniques proposed
by the original NVidia paper [1] have proven valuable in
enhancing the performance of GANs on limited datasets,
they come with certain weaknesses. These methods often
generate augmented data that is too closely aligned with the
original dataset, leading to limited diversification. Addition-
ally, their effectiveness can vary, with certain augmentations
proving less effective than others, as exemplified by the
comparison between cutout and blitting in the original paper
[1]. Moreover, there is a risk of introducing issues such
as overly high p-values, affecting the reconstruction of the
original dataset.

In addition, the proposed adaptive discriminator augmenta-
tion method has been predominantly limited to raw image
datasets with no inherent correlation between samples. A
potential avenue for improvement lies in extending these
augmentation strategies to leverage temporal data sources.
In numerous areas, such as medical scans captured at dif-
ferent times, or frames from a video, images are not iso-
lated frames but rather sequences captured over time. This
presents an opportunity to enhance model robustness by
tapping into the temporal relationships within the original
video sources by creating a new kind of ”temporal” augmen-
tation, and measuring its success within the ADA framework
proposed by NVidia [1].

b) Implementation Plan and Setup
What is a Temporal Augmentation:

Building upon the NVIDIA approach, where image aug-
mentations are strategically employed to prevent overfitting
without influencing generated images, temporal augmenta-
tion introduces a nuanced and non-agnostic element into the
sequence of frames.

Similar to the existing augmentations outlined in the
NVIDIA paper, which transform the source image through
methods like color adjustments, rotation, pixel blitting, or
cutouts, a temporal augmentation introduces a temporal
traversal aspect. In this context, the augmentation involves
skipping frames forward in the temporal sequence. The
underlying concept is to generate a new frame that retains
most of the qualities of the original frame but with enough
differences to be meaningful (see Figure 1).
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Figure 1. Temporal augmentations performed on 3 random images
of the TGIF dataset. Demonstrates how each successive frame
retains most of the qualities of the previous frame, but as the
frames advance, the information in the face image changes due to
movement or change in expression.

Significance of this Method:

This departure from agnosticism is pivotal. Unlike tradi-
tional agnostic augmentations, these temporal shifts are
inherently tied to the specifics of the temporal sequence,
breaking away from the reversibility characteristic observed
in other augmentations. In contrast to non-agnostic aug-
mentations like cutout, which removes information from
the data, the temporal augmentation approach avoids such
data reduction. Cutout, while effective, has the drawback
of potentially discarding critical information, introducing a
weakness in scenarios where retaining all original features
is crucial.

The non-agnostic nature of temporal augmentation, while
not reversible, preserves all original data, addressing the
limitation of information loss present in cutout. This trade-
off could allow for enhanced model robustness in temporal
scenarios, as the discriminator is compelled to discern both
static features and temporal relationships within the data.

Implementation of this Method:

In my implementation, I introduced two distinct temporal
augmentations, each designed to advance the frame by three
frames. However, the combined effect of both augmenta-
tions skips the frame forward by six frames. I decided to
set the combined probability for any temporal augmentation
to be 0.8, as this was shown to be the augmentation prob-
ability value that resulted in the minimum FID scores for
the FFHQ-2k and FFHQ-10k datasets in the NVidia paper
[1], and since I am trying to generate human faces with
datasets around those sizes, I determined this number to be

reasonable for my implementation.

To achieve an overall temporal augmentation probability of
0.8, both individual probabilities for a 3-frame augmentation
(P1 and P2) are set to 0.553. This ensures that the combined
probability (Pcombined = P1 × P2 = 0.306) and the sum
of individual probabilities align with the desired overall
probability. Consequently, with a 0.306 probability, the
augmentation skips six frames, and with a 0.553 probability,
it skips three frames. This approach collectively maintains
the intended 0.8 probability of a temporal augmentation
during training.

Crucially, these temporal shifts don’t occur within the
dataset itself, as outlined in the original paper, but rather be-
fore the data is passed into the discriminator, much like the
methodology explained in the NVIDIA paper for standard
image augmentations. However, there is also a slight weak-
ness of the method: unlike other augmentation methods,
since this relies solely on the original data to be performed,
it cannot be applied to images created by the generator. This
could potentially limit the efficacy of the method, which
will be noted in the results.

Dataset:

For the temporal dataset, I curated a collection of 4800
frames of video data featuring human faces extracted
from GIFs sourced from the Tumblr GIF (TGIF) dataset
(https://raingo.github.io/TGIF-Release/), a collaborative ef-
fort by Yahoo Research and the University of Rochester.
Specifically, there are 1600 unique GIFs, from which I
processed the 1st, 4th, and 7th frames in order to avoid
situations where the GIFs are “slow-paced”, or contain im-
mediate frames where there is no noticeable difference from
frame to frame.

To identify facial features within these frames, I employed
the MTCNN (Multi-task Cascaded Convolutional Networks)
algorithm originally developed by David Sandberg. Then,
using the OpenCV library, I focused on the detected faces,
cropped them to isolate the facial regions, and resized
the resulting images to a standardized 256x256 resolution.
This preprocessing ensures that the dataset comprises high-
quality facial images ready for integration into the GAN
training process (see Figure 2).

In addition, each processed image is labeled according to
its originating frame within the GIF sequence. This label-
ing becomes a crucial aspect in the subsequent GAN code
implementation, allowing for the incorporation of temporal
information during training.
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Figure 2. Random examples of pre-processed 256x256 images
taken from the temporal dataset, sourced from the 1st frames
of GIFs originally in the TGIF dataset.

Pre-trained Model:

To streamline reproducibility, I will start with a semi-
pretrained LSUN Cats 256x256 model. This decision is
motivated by the desire to facilitate result replication while
accommodating time constraints. Using a model for cats
ensures that the model’s characteristics are not already bi-
ased towards human faces, which would otherwise make
it difficult to evaluate the success of the new augmentation
methods. While starting from an object dataset like CIFAR
would not be suitable due to the dissimilarity between object
characteristics and faces, leveraging a cat model provides a
balance—sharing fundamental features with human faces
while still presenting distinctive qualities.

Experiments:

I will conduct three unqiue experiments to help assess the
impact of temporal augmentations on training a StyleGAN2
ADA model. The Transfer Learning Base for each exper-
iment will be the LSUN Cats 256x256 dataset, and the
models will be trained for 200kimg on the preprocessed
and filtered Tumblr GIF (TGIF) dataset. Under ideal cir-
cumstances, this number would be around 10000kimg+,
however, due to time constraints, it has been reduced.

All three experiment types will be performed on two dataset
sizes: 1600 unique GIFs and 5000 unique GIFs, resulting in
a total of six experimental runs.

The three experiment types are as follows:

CONTROL SET 1 – STANDARD AUGMENTATIONS
APPLIED FOR ADA (BLIT + GEOM)

Dataset: The first frame of each GIF in the dataset.

In this experiment, the augmentation method that will be
used involves the application of standard pixel blitting and
geometric augmentations during the training process. “Blit”
augmentations refer to pixel-level transformations such as
flipping, rotation, and translation. On the other hand, “geom”
augmentations encompass general geometric transforma-
tions like scaling, rotation, anisotropic scaling, and frac-
tional translation. These augmentations were identified as
the two most successful types in the Nvidia paper and will
serve as a benchmark for the other experiments. The dataset
composition comprises one face frame from each unique
GIF.

CONTROL SET 2 – STANDARD AUGMENTATIONS
APPLIED FOR ADA (BLIT + GEOM)

Dataset: The first three frames of each GIF in the dataset.

This mirrors Control Set 1, except that the temporal augmen-
tations are applied directly to the dataset before training, as
opposed to during the training process. Consequently, the
model will be exposed to 3x the data from the start. This
experiment is necessary to compare to the experimental set
to ensure that any advantages gained from temporal aug-
mentation are not merely a result of increased initial data
exposure but instead stem from the adaptive augmentation
mechanism itself.

EXPERIMENTAL SET – TEMPORAL AND STANDARD
AUGMENTATIONS APPLIED FOR ADA (TEMPORAL +
BLIT + GEOM)

Dataset: The first frame of each GIF in the dataset.

The augmentation method will involve simultaneously ap-
plying temporal, pixel blitting, and geometric augmentations
during the training process. Similar to Control Set 1, the
dataset will be restricted to the first frame of each GIF. Per-
formance improvements will be compared to Control Set 1
to determine if adding the temporal augmentation alongside
the standard augmentations enhances the model’s abilities,
rather than solely benefiting from an increase in the quantity
of data like Control Set 2.

Evaluation Metrics:

I will measure the results of each experiment using Fréchet
Inception Distance (FID) scores.

The FID measures the similarity between the generated sam-
ples and the target dataset in terms of both the distribution
of the samples and the perceptual similarity. The score can
be calculated using the formula below, where a lower FID
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score indicates more similarity:

FID = ||µreal−µfake||2+Tr(Creal+Cfake−2(Creal ·Cfake)
0.5)

In addition, the Generator and Discriminator testing losses
were also monitored and recorded throughout the experi-
ments, which represent the respective performance metrics
indicating how well the generator is synthesizing realistic
samples and how effectively the discriminator is distinguish-
ing between real and generated data during the evaluation
phase.

Priority of Implementation Efforts:

1. Reproducing baseline experiments with the control set
featuring standard augmentations (Control Set 1).

2. Generating the temporal dataset with the correct frame
labels.

3. Evaluating the control set with temporal augmentations
applied directly to the starting data (Control Set 2).

4. Implementing temporal augmentation capabilities
within the existing GAN framework.

5. Executing experiments with the simultaneous applica-
tion of temporal and standard augmentations (Experi-
mental Set).

6. Analyzing and comparing results using FID scores to
draw conclusions about the effectiveness of temporal
augmentations in enhancing the training of StyleGAN2
ADA on limited datasets.

c) Implementation Details
Code Base:

The implementation will be based on the StyleGAN2 ADA
Pytorch implementation by Nvidia Labs, with optimizations
for Google Colab by GitHub user @dvshultz. This codebase
provides a solid foundation for training and evaluating GAN
models based on the paper’s ADA method.

Temporal Augmentation Implementation:

Temporal augmentations are not inherently supported in the
existing GAN framework, as they require additional infor-
mation beyond the original image. To address this limitation,
I developed new code to enable the GAN to account for the
temporal component of images. This was achieved by pass-
ing the image ID and frame number through the image label
during training. By reading the image label, the model could
identify the specific image being processed and retrieve the
next frame’s image data from the dataset. This functionality
was seamlessly integrated into the model’s code, with the
flexibility to toggle it on and off using a configuration flag.

Dataset Implementation:

The implementation of the temporal augmentation code,
along with the dataset generation code, was done from
scratch. The dataset generation involved downloading GIFs,
extracting individual frames, and utilizing the MTCNN
(Multi-task Cascaded Convolutional Networks) algorithm
from the mtcnn Python package. This implementation of
MTCNN is credited to David Sandberg, known for his con-
tribution to FaceNet’s MTCNN. The OpenCV library was
then used to detect faces, crop around them, and resize the
resulting images to 256x256.

FID Score Implementation:

The FID (Fréchet Inception Distance) scores, crucial for
evaluating the model’s performance, were calculated using
the fid-score pip package developed by Rayyan Akhtar. This
alternative was adopted due to challenges faced with the
metric calculator provided by Nvidia, ensuring accurate and
reliable evaluation of the generated images.

System Requirements:

The custom version of the StyleGAN2 code was ran on
Google Colab using Pytorch 1.9.0+cu111 and torchvision
0.10.0+cu111 on a Tesla V100-SXM2-16GB GPU.

d) Implementation Details
FID Scores:

Table 1. FID Scores for Different Experiment Sets
Experiment 1600 GIFs 5000 GIFs
Control Set 1 44.25 32.69
Control Set 2 50.04 35.77
Experimental
Set

40.15 31.64

The FID scores in Table 1 reveal that the experiments in-
corporating temporal augmentations yielded slightly lower
FID scores than the initial experiment without them. This
suggests that introducing temporal dynamics contributes to
a subtle yet discernible improvement in image diversity, as
indicated by the FID metric. Conversely, the second ex-
periment, relying solely on data augmentation, displayed
significantly worse performance, potentially pointing to an
overfitting scenario. The elevated test loss further supports
this interpretation, indicating that augmenting the data with-
out the adaptive augmentation mechanism led to a less ro-
bust model. The relationship between these scores also
remained consistent between the 1600 GIF and 5000 GIF
dataset sizes, indicating that the temporal augmentation had
the same positive effect across different limited dataset sizes.
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Image Output:

Control Set 1, 1600 GIF Dataset. Trained with Blit and
Geometric Augmentations.

Control Set 2, 1600 GIF Dataset, expanded with extra
frames. Trained with Blit and Geometric Augmentations.

Experimental Set, 1600 GIF Dataset. Trained with
Temporal, Blit and Geometric Augmentations.

Figure 3. Sample generated images from each experiment to visu-
ally demonstrate the impact of temporal augmentations on image
diversity.

While the generated images from all three experiments as
shown in Figure 3 appear nearly identical to the untrained
eye, the subtle improvement in FID scores with temporal
augmentations suggests that these changes, while not visu-
ally striking, have a positive impact on the underlying data
distribution. The nuanced quality enhancement, although
not immediately perceivable, aligns with the goal of GANs
to generate realistic and diverse images.

Loss Values:

Figure 4. The generator and discriminator losses over the 200kimg
training iterations for each experiment on the 1600 GIFs dataset.

Analyzing the loss values of the generator and discrimi-
nator (Figure 4) shed light on some the GAN’s training
dynamics. The initial increase in losses during the early
iterations is a typical behavior when transitioning from a
pre-trained model on a different dataset (LSUN Cats) to
the target dataset (human faces). The subsequent decline in
losses, especially in the discriminator model, indicates that
the model adapted to the new dataset, but there was still am-
ple room for improvement. The consistent loss post-initial
iterations in the generator model hints at the potential for
further refinement with an extended training period. Fur-
thermore, there was no significant difference in loss value
behavior between experiments.
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Expectations and Hypotheses:

The overall alignment of results with expectations reinforces
the understanding that the small dataset size and limited
training iterations led to high FID scores. While the genera-
tor may not directly benefit from added augmentation, the
discernible improvement in FID scores with temporal aug-
mentations emphasizes their potential in increasing image
diversity, even within the constraints of the limited dataset.
The reason why the FID scores were likely not any lower
is most likely due to the fact that the generator itself cannot
benefit from the added augmentation, and it is only applied
to the real images right before they’re passed into the dis-
criminator. However, the slightly lower FID score compared
to Control Set 1 is still an indication that having the augmen-
tation applied with a certain probability to the real images
still helped increase image diversity, and was indeed a better
outcome than feeding in all the frames at once as part of
the original dataset itself (Control Set 2). Furthermore, the
decline in losses post-initial iterations supports the hypothe-
sis that continued training could lead to a more refined and
robust model, with even better FID scores.

Discussion

These results, overall, indicate potential in exploiting the
temporal nature of a dataset to enhance the performance of
GAN models via the implementation of temporal augmenta-
tion within an existing adaptive augmentation framework.

This approach could be further beneficial in a different type
of GAN architecture, such as the bCR used as a reference
in the Nvidia paper [1]. This is because this approach only
needs to perform the augmentation once during a single
back-and-forth iteration between the generator and discrimi-
nator, and it also allows for comparison between the unaug-
mented and augmented real images. In the context of the
temporal augmentation, this might not be perceived as a
weakness, considering that the augmented image remains
part of the valid data distribution, even if augmented data
leaks into the generated data. Although bCR may greatly
benefit from it, it’s seen as an obsolete technique, which is
why I instead pursued it using ADA.

Thus, this experimental implementation suggests that the
simultaneous application of temporal and standard augmen-
tations could potentially enhance the utilization of limited
datasets in GANs. The broader implications may extend to
leveraging the temporal nature of video data to improve the
quality of image datasets for training AI models in general.
However, it is important to note that further validation is
required to substantiate this hypothesis.

Conclusion
In my implementation, I introduced a novel approach for
leveraging temporal data augmentation as a method to en-
hance the performance of GAN models, primarily when
working with limited datasets. This technique, building
upon the widely accepted NVidia ADA framework, marks
a change from traditional data augmentation methods and
opens up new avenues for further exploration and refine-
ment.

Interestingly, the results indicated that temporal augmen-
tation could lead to a subtle yet discernible improvement
in image diversity, as evidenced by the lower FID scores.
This finding highlights the potential of such an approach
in increasing the range and versatility of GAN-based AI
models, particularly in scenarios involving temporal data
sources such as video frames. In the medical field, tempo-
ral augmentation could improve the analysis of sequential
medical scans, resulting in earlier disease detection and bet-
ter patient outcomes. For autonomous vehicles, it could
enhance the generation and interpretation of temporal data,
such as traffic changes or weather conditions, leading to
more reliable self-driving systems.

However, the trade-off of this method is its non-agnostic
nature. Unlike typical augmentations, temporal shifts are
tied to the specifics of the temporal sequence and lose the
reversibility characteristic seen in other augmentations. This
presents unique challenges that future work could seek to
address, exploring ways to enhance the reversibility of tem-
poral augmentations while maintaining their potential bene-
fits.

Furthermore, while the temporal augmentation method
showed promise, it may be relatively constrained when used
in conjunction with the ADA framework. The technique
might hold greater potential when used with other GAN
architectures, like binary cross-entropy with reject (bCR).
Future research could explore this avenue, evaluating the
effectiveness of temporal augmentation in differing GAN
architectures.

Moreover, an interesting extension of this study would be
to test the temporal augmentation technique on a larger
scale. The current implementation was somewhat limited
by dataset size and training iterations, which might have
restricted the ultimate potential of the technique. More ex-
tensive research with larger datasets and increased training
iterations could provide a more comprehensive understand-
ing of the technique’s strengths and weaknesses, as well as
its broader applicability.

In conclusion, the temporal augmentation technique pro-
posed in this study represents an exciting idea in the field
of GANs. The ability to leverage inherent temporal infor-
mation in datasets to enhance model performance suggests
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potential for the development of more sophisticated and
robust machine learning models. However, as with all new
techniques, further research is necessary to fully understand
its implications, adapt to its unique challenges, and maxi-
mally exploit its potential benefits.
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